
Secure Schemata: What No One is Telling You IOUG Live! 2003: DBA

p. 1 of 10 Paper 549

SSEECCUURREE SSCCHHEEMMAATTAA:: WWHHAATT NNOO OONNEE IISS TTEELLLLIINNGG YYOOUU

Barry Johnson - World Bank

Attend the typical presentation on Oracle security, and you will likely hear about some number of topics such as:

password management, pre-DML triggers, password-protected roles, virtual private data bases, audit trails,

DBMS_Obfuscation package, and Advanced Security. This is not one of those typical presentations!

Although I may touch on some of these towards the end, the fact is that they are all “after the fact” measures:

�Security must be part of the design, not some sort of add-on.

�Any afterthought is likely little more than a “speed bump”.

�There have been dramatic changes to Oracle's architecture that support a better approach.

�There must be no shared authentications, not even that of the application tables' owner.

The conclusion is that fundamental issues must be addressed as part of setting up a data base schema. And that's

the subject of this paper.

After wrestling with the “how” for some time, my epiphany came when I read the following in Oracle's
documentation1:

“A schema is a security domain that contain database objects ... unique schemas do not allow connections

to the database ...”

So the essence of the idea is to have objects under the ownership of something with no CREATE SESSION

privilege. We finish with clear segregation of users (who have connect privileges, but no objects) versus schemata

(which have objects, but no connect privileges). This paper shows how to implement that strategy and, hopefully,

explains why you will want to do so.

SCHEMA SETUP

There are a number of measures we take to lock down the schema. First of all, we create a special profile that is as

restricted as we can make it:

CREATE PROFILE <SchemaProfile> LIMIT
 COMPOSITE_LIMIT 1
 CONNECT_TIME 1 -- minutes
 CPU_PER_CALL 1 -- 0.01 seconds
 CPU_PER_SESSION 1 -- 0.01 seconds
 FAILED_LOGIN_ATTEMPTS 1
 IDLE_TIME 1 -- minutes
 LOGICAL_READS_PER_CALL 1
 LOGICAL_READS_PER_SESSION 1
 PASSWORD_GRACE_TIME 0
 PASSWORD_LIFETIME 0
 PASSWORD_LOCK_TIME 999999
 PASSWORD_REUSE_MAX 999999 --\ Set either to a large value, and
 PASSWORD_REUSE_TIME UNLIMITED --/ the other to UNLIMITED.
 SESSIONS_PER_USER 1 ;

The use of resource limits assumes the Resource_Limit option is set for the data base. But you need to do that

anyway, along with appropriately configuring all profiles including DEFAULT to reduce the “denial of service”
risk from someone submitting a resource-intensive query.

With the profile done, now we can create the schema itself:

1.
1
Oracle 9i Application Developer's Guide – Fundamentals Release 2 (9.2), Ch. 11 Database Security
Overview for Application Developers, “Unique Schemas” although the equivalent can be found in older, pre 9i
documentation.

������������	
��

IOUG Live! 2003: DBA Secure Schemata: What No One is Telling You

Paper 549 p. 2 of 10

CREATE USER <Schema>
 IDENTIFIED BY VALUES 'Locked Schema'
 PROFILE <SchemaProfile>
 ACCOUNT LOCK
 PASSWORD EXPIRE
 DEFAULT TABLESPACE <SchemaTS>
 QUOTA UNLIMITED ON <SchemaTS>
 TEMPORARY TABLESPACE <TempTS> ;

Obviously we take advantage of options to lock the account and expire the password. And since Oracle's

password hash is always uppercase, we set the hash to a mixed-case string knowing that there is no password that

will match it. We also set the default tablespace for objects that will be created under this schema since that will

be used, when necessary, for objects created in the schema via an “any” privilege.

For now, we assign no other roles or privileges to this account.

SCHEMA ADMINISTRATION

There are two techniques for administering a schema's objects.

“ANY” PRIVILEGES

Ideally, we would like to do this:

GRANT CREATE TABLE,
 ALTER TABLE, ...
 ON <Schema>
 TO <SchemaAdmin> ;

But, of course, Oracle doesn't support that scope-limitting “ON <Schema>” option. Instead, we have to hand out

“any” privileges – such as CREATE ANY TABLE, ALTER ANY TABLE – to those who will be responsible for the

schema. Of course, we do it by setting up a <SchemaAdmin> role and attaching the privileges to that:

GRANT CREATE ANY TABLE,
 ALTER ANY TABLE, ...
 TO <SchemaAdmin> ;

But that leaves the recipient with data base-wide “omnipotence”. How can we limit the use of “any” privileges?

What if, for example, we host more than one schema in an instance, and delegate the administration of each to

different groups? We want to ensure one group can't interfere with the schema of the other.

You might be forgiven for thinking Oracle has a solution to this with their schema trigger feature. Alas, you'd be

wrong because the implementation belies the name: it is not a schema trigger, but a user trigger. Perhaps an
example best illustrates it: if I log in as Barry and, via an “any” privilege, try to change a Scott object, it will be a

“schema” trigger keyed to “Barry”, not “Scott”, that fires. In other words, instead of:

CREATE TRIGGER <TriggerName>
 BEFORE DDL ON <Schema>.SCHEMA ...

the syntax should be:

CREATE TRIGGER <TriggerName>
 BEFORE DDL BY <User>.USER ...

(The schema trigger examples I've seen to date have all revealed the author's ignorance of this. Please feel free to

join me in educating people on the reality. And, for what it is worth, I spent considerable time trying to convince

Oracle, via MetaLink, that this was a bug, but they were adamant that the current implementation is correct and it

is just the documentation that needs clarification. Which is a shame, really, because I've yet to conceive a use for

the current implementation whereas a true schema trigger could be a very useful feature. It also requires a rewrite

of Oracle’s definition of “schema” cited in the introduction which is a pity, because I thought it correct.)

To use this trigger in its current form would require us to create one for each data base user. The good news is

that there is an easy way to do that: a data base trigger! Consider the following:

Secure Schemata: What No One is Telling You IOUG Live! 2003: DBA

p. 3 of 10 Paper 549

CREATE TRIGGER <Schema>.DDLRoleCheck
 BEFORE DDL ON DATABASE
 WHEN(Ora_Dict_Obj_Owner = '<Schema>')
 BEGIN
 IF NOT DBMS_Session.Is_Role_Enabled('<SchemaAdmin>') THEN
 RAISE_APPLICATION_ERROR(-20999,

 '<Less-than-candid error message!>') ;
 END IF ;
 END ;

Things worth noting in this trigger include:

�“DDL” in the BEFORE clause is shorthand for assorted statements which, as an alternative, could be individually

listed. See the SQL Reference manual for more details.

�The WHEN clause essentially turns this into the schema trigger we wanted! Within non-DML triggers, a number

of special Ora_~ variables are available2.

�The check for the appropriate role being enabled has to be inside the PL/SQL block, rather than in the WHEN

clause, because SQL does not understand the BOOLEAN it returns.

�The trigger must RAISE an exception to block the DDL attempt. But the error returned probably needs to be

vague since it might be someone attempting something untoward.

This could be enhanced in many ways: we could check for the DBA role and also let it through; we might send

out a pager “alert” before raising the exception; …

At this point, though, we have a technique that effectively implements the GRANT ... ON SCHEMA ... statement

we wanted at the start of the section.

“SUID” PROCEDURES

The second technique is, perhaps, less obvious although the idea will be familiar to *nix programmers because it

is Oracle's “suid” mechanism: a way to give otherwise “unsafe” privileges to someone in a controlled, safe way.

In Oracle, this is by creating a procedure in the <Schema> marked AUTHID DEFINER and then letting others

execute it. Such procedures run with the privileges of the owner rather than the privileges of the executer.

Bug: In many of the currently-circulating Pl/SQL releases, SYS_CONTEXT('UserEnv','Current_User')

returns the wrong value within an AUTHID DEFINER procedure. It should return the procedure owner but,

instead, it returns the logged-in user. The workaround is to wrap it in a SELECT ... FROM Dual, because

the correct value is returned by the SQL context.

(The other AUTHID option, Current_User, means the procedure simply inherits the Current_Schema and

Current_User of the calling context.)

As it happens, there are at least two cases where this is the only option:

�A private data base link may only be created by the intended owner. It is not a question of there being no “any”

privilege for it: the statement syntax simply doesn’t support it being created from outside the schema.)

�An object can only be renamed within the Current_Schema. Again, it is a matter of the statement syntax not

supporting the use of a qualifying schema name for the object being renamed.

Prior to 9iR2, there was also a third case: at least the initial object privilege could only be GRANTed by the object
owner. If that GRANT encompassed administrative rights – i.e., used the WITH GRANT OPTION clause – then the

recipient could do subsequent GRANTs but with a downside: dropping a user from the data base also REVOKEs

all the privileges they have GRANTed! Therefore, we really need the privileges GRANTed by the object-owning

<Schema> itself.

Interestingly, 9iR2 introduces a new system privilege: GRANT ANY OBJECT PRIVILEGE. Someone with this can

GRANT privileges on anything to anyone as freely as they can create a table anywhere with the CREATE ANY

TABLE privilege. (Note that, under this option, all privileges are GRANTed as if they were assigned by the owning

2.
2
 Oracle 9i Application Developer's Guide – Fundamentals Release 2 (9.2), Ch. 16 Working with System
Events, also documented in the same manual in older releases.

IOUG Live! 2003: DBA Secure Schemata: What No One is Telling You

Paper 549 p. 4 of 10

schema itself. There will be no cascading revokation of privileges when someone who used this privilege is

dropped.)

So, how does this “suid” technique work? Let's look at a simple implementation of the GRANT case that was

necessary before 9iR2:

CREATE PROCEDURE <Schema>.Give(How IN VARCHAR2,
 What IN VARCHAR2,
 Whom IN VARCHAR2) AUTHID DEFINER IS
 BEGIN
 EXECUTE IMMEDIATE 'GRANT ' || How
 || ' ON ' || What
 || ' TO ' || Whom ;
 END Give ;

Ahhh, but how to give EXECUTE privileges on this procedure? For that you will need a little “bootstrap”

procedure with the appropriate GRANT “wired” into it! After that, be sure to change the above procedure to

CREATE OR REPLACE ... so that privileges on the older version carry over to the new.

Better, of course, is to simply create a “DDL” PACKAGE that contains all the entry points of this type that you

will build.

The interesting thing with this approach is the opportunity to add “features” to the basic functionality. In my

implementation of the above procedure, for example, I accept an object list, and loop through it doing a GRANT

on each. I also omit the first parameter and, instead, look up the type of the object: if it's a table or view, the

privilege is a SELECT whilst any procedure type gets an EXECUTE.

An even better example is my data base link procedure, which includes the following:

�After creating it, the link is tested by trying a SELECT against User_Users at the other end.

�It creates local views for many of the remote All_~ catalogue views.

�It also GRANTs SELECT on those local views to the <SchemaAdmin> role. This makes it easier to look at

available remote objects from within the local instance.

For procedures that create objects, the owning <Schema> must be directly given the corresponding privilege; it

cannot be given via a role because roles are disabled in AUTHID DEFINER procedures. For the procedure that

creates the data base link to work, we also need the following:

GRANT CREATE DATABASE LINK TO <Schema> ;

Just remember: never give the CREATE SESSION privilege!

These procedures will, obviously, have the potential to “do damage”, so the code needs to be carefully written:

�Consider how exceptions are raised by the procedure. Don't reveal information that might be useful to someone

trying to infiltrate the instance.

�Always check the parameters to ensure the procedure can't be compromised by malformed data. If a parameter is

concatenated into a SQL statement, ensure the parameter can't be used to maliciously subvert that statement.

�It'd probably be worthwhile duplicating the role check included in the earlier data base trigger. At best, the same

check will occur twice as part of a DDL execution; at worst, this one will still catch it if, for any reason, the

trigger is not in place and active.

In theory, all administrative functions could be handled via this mechanism. I've added things that could be done

with “any” privileges just so I could include some of those extra conveniences. But I don't expect to ever replace

the complexity of CREATE/ALTER TABLE statements!

TRIGGERS

Triggers execute as an AUTHID DEFINER procedure: within a trigger, both Current_Schema and Current_User

are set to the trigger owner before entering the trigger code.

This is especially reasonable behaviour if, in the course of its execution, the trigger calls another procedure and/or

executes dynamic SQL. Without this, the execution results would be influenced by the caller's session. Which

could give the caller an opportunity to manipulate, if not subvert, the trigger's actions.

Secure Schemata: What No One is Telling You IOUG Live! 2003: DBA

p. 5 of 10 Paper 549

By executing in the context of the trigger's owning schema, we ensure behaviour clearly expected at the time the

trigger was created.

VIEWS

Views also execute as an AUTHID DEFINER procedure, but with a twist: the changes in the Current_Schema and

Current_User arising from the call to the view are not reflected in a SYS_CONTEXT call within the view. A quick

look at the All_~ and User_~ catalogue views shows why this is good. Consider User_Tables, which is,

essentially, the following:

CREATE VIEW User_Tables
 AS SELECT *
 FROM DBA_Tables
 WHERE Owner = SYS_CONTEXT('UserEnv', 'Current_User') ;

But, of course, both DBA_Tables and User_Tables are actually owned by Sys. If the Current_User switch was

evident within the view's definition, this would always return Sys's objects only! But since Current_User appears

to retain the value from the calling context, then the view returns the tables owned by that context, and we get the

results we have come to expect.

On the other hand, if the Current_User security domain did not switch “behind the scenes”, then we would not be

able to GRANT SELECT on a view without also GRANTing privileges on all the objects referenced within the

view. And we know we don't have to do that!

There is a simple way to prove this behaviour. Consider the following:

CREATE FUNCTION <Schema>.MyCurrentUser RETURN VARCHAR2 AUTHID Current_User AS
 BEGIN
 RETURN(SYS_CONTEXT(‘UserEnv’, ‘Current_User’)) ;
 END MyCurrentUser ;

Because it executes with AUTHID Current_User, it inherits the caller’s context. Now consider the following:

CREATE VIEW <Schema>.CurrentUserCheck
 AS SELECT SYS_CONTEXT(‘UserEnv’, ‘Current_User’) CUDirect,
 MyCurrentUser() CUFunction
 FROM Dual ;

If I – connected as Barry – do a SELECT * FROM <Schema>.CurrentUserCheck , the first column returns “Barry”

while the second returns “<Schema>”, even though – ostensibly – the security context does not change when

calling a procedure of this AUTHID type! Substitute Current_Schema for Current_User and you get the same

result.

Such views cannot use Session_User: reference to an User_~ within an AUTHID DEFINER procedure must return

the objects owned (or accessible, in the case of All_~ views) by the current security domain (i.e., Current_User).

To do otherwise would let an AUTHID DEFINER procedure “peek” at the objects owned by the Session_User

without being given such privileges. And that would be a security violation.

Bug: A few of the User_~ views, including User_Jobs, filter with Session_User instead of Current_User.

Therefore these views return the wrong result within an AUTHID DEFINER procedure. A fix is available
from Oracle.

DATA BASE LINKS

With security, we expect accountability. We need to be able to track who does what. Data base links that include

an username/password are a major test of how well we do our job.

In an ideal world, data base links will have no pre-wired authentication. Anyone that uses such a link, then, will

have their local credentials passed to the remote data base, and the user will have the same privileges as they

would have by connecting directly to that remote data base. Unfortunately, this requires the synchronisation of

credentials between data bases, a task that increases in complexity as the number of instances increases. Well,

unless you pay extra money for Oracle's Advanced Security option, which adds support for network

authentication services such as RADIUS, Kerberos, and PKI. (I return to this later.)

IOUG Live! 2003: DBA Secure Schemata: What No One is Telling You

Paper 549 p. 6 of 10

Commonly, people set up a “generic” username in the remote data base, and wire that (with its password which,

by the way, is stored in the local data base as clear text) into the local data base link. Now the person accessing

remote objects will be masked from the remote instance; think “anonymous ftp”. By implication, the

responsibility for tracking accesses to objects in the remote data base has been transferred to the local one. And

we need to do due diligence by being able to show, when asked, how that link has been used.

But consider the case when such a link is PUBLIC: every user in the instance has access to everything available at

the remote data base: is that really what the owner of that remote data intended when they shared their

custodianship responsibilities with you?

Oracle provides no mechanism for controlling the use of a data base link. That leaves only the option of hiding it,

by making it a private link, under the ownership of a <Schema>. Then we create local views of remote objects.

And finally we GRANT access to those views. The result is demonstrable local stewardship of the remote data, a

much more responsible and defendable position when the auditors start asking questions!

So the rule with respect to data base links is:

�A PUBLIC DATABASE LINK must not include a wired authentication (username/password).

�Conversely, a DATABASE LINK that includes a wired authentication must be private. Access to remote objects is

via local views and synonyms based on the link, on which appropriate privileges are given.

It should now be apparent why I mentioned the procedure for creating private data base links earlier! For what it

is worth, I also have a procedure for creating the local view against a remote object that includes ensuring the

remote object exists, amongst other things.

Bug: There is a bug in Oracle's AUDIT mechanism for private data base links: the owning schema is not
captured (it is left NULL) although the session user is captured. This may lead to the erroneous conclusion

that the link is owned by the session user, or maybe even PUBLIC. The last I heard, the fix is scheduled

for a release after 9iR2.

Bug: If you execute:
 ALTER SESSION SET Current_Schema = <Schema> ;
and then SELECT against a local view of a remote object with the view <Schema> implied, the link

under <Schema> will be ignored. Indeed, Oracle will unconditionally attempt to resolve to a PUBLIC

data base link of the same name. Oracle have known about this problem for over a year and a half, but

I've yet to be told that they intend to fix it.

SYNONYMS

A goal of a good security model is predictability.

If Oracle can't find an object in the active security domain, it will look in the PUBLIC domain. Think of it as

Oracle's equivalent of the *nix “path”.

The interesting thing is that if a local object of the same name is created in the future, Oracle will – without

warning – switch to use the new object. And if that invalidates the objects that depend on it, well ...

The other problem with depending on PUBLIC synonyms is that, by definition, they serve “multiple masters”

(namely, every user of the instance). If someone decides to change the synonym's definition, not everyone may be

happy about it.

So much better, in an attempt to control the application's destiny, is to never rely on PUBLIC objects. Instead, the

<Schema> should have local references to everything required by the application. At the time of writing, my

strategy is:

�For tables and views in a remote instance, create a local view that is a simple SELECT * ... against the remote

object (via that private data base link, as necessary). The advantage of this is that the local data base gets a

copy of the column list for the object.

�For tables and views in other schemata in the same data base, simply create private synonyms to them. For these,

of course, the column list is already local.

�For anything else (i.e., procedures), create a private synonym regardless of whether it is a local or remote object.

Secure Schemata: What No One is Telling You IOUG Live! 2003: DBA

p. 7 of 10 Paper 549

Note that you can't create a synonym to a TYPE in another schema in releases earlier than 9iR2; such references

must explicitly include the owning schema.

There should be no dependence on anything declared PUBLIC. Is there a way to check this? Yes, with something

like the following:

SELECT Referenced_Name
 FROM DBA_Dependencies
 WHERE Referenced_Owner = ‘<Schema>’
 AND Referenced_Type = ‘NON-EXISTENT’ ;

Each entry in the result is a dependency on a PUBLIC synonym (for which there is also an entry to be found in

DBA_Dependencies) and candidate for being switched, without warning, to a currently-absent local object if ever

one is created with the indicated Referenced_Name. It will included dependencies on Sys-owner objects; these

may be tolerated (i.e. ignored) by enhancing the query:

SELECT Referenced_Name
 FROM DBA_Dependencies D
 WHERE Referenced_Owner = '<Schema>'
 AND Referenced_Type = 'NON-EXISTENT'
 AND NOT EXISTS(SELECT '*'
 FROM DBA_Synonyms
 WHERE Owner = 'PUBLIC'
 AND Synonym_Name = D.Referenced_Name
 AND Table_Owner = 'SYS'
 AND DB_Link IS NULL) ;

“WHERE AM I? WHO AM I?”

We have mentioned aspects of it, but it's probably worthwhile to summarise the Oracle characteristics that give it

some of the flavour we are used to seeing in *nix3:

�Session_User: This is the login user, which also becomes the initial Current_Schema and the initial

Current_User.

�Current_Schema: This is the default object owner to assume when one is not explicitly given. It can be changed

via the ALTER SESSION SET Current_Schema = ... statement. Like Current_User, it also changes to the

owning <Schema> of an AUTHID DEFINER procedure when that procedure is entered. Think of it as the

equivalent of a *nix “cd” command.

�Current_User: This is the current security domain controlling the session's privileges. It changes to the

<Schema> owner of an AUTHID DEFINER procedure when that procedure is entered, in similar fashion to

what happens when calling an *nix “suid” program. (Of course, it reverts back upon exiting that procedure.)

Note that a view is supposed to execute as a “limited” AUTHID DEFINER procedure (as described earlier, and

notwithstanding the bug previously cited in the way a data base link is resolved).

�Proxy_User: This is a trusted agent that can externally authenticate an user, and pass it for Oracle to accept “on

faith”. Proxy authentication is an advanced mechanism that requires a program using the C APIs or, in 9i, the

Java equivalent.

Explicit separation of the Current_Schema and Current_User facets of the session, along with the means to

manipulate them, is a significant enabler of our strategy. It lets us apply traditional, tried, and proven *nix

techniques in the data base itself.

Bug: loadjava supports a “schema” parameter. But in older Oracle versions, it is ignored by the “resolve”

function – even when an explicit “resolver” is given – and unconditionally attempts to resolve against the

Session_User. One workaround is to simply load the java, and use DDL (ALTER JAVA ...) to resolve it

later. A fix should be available from Oracle.

3.
3
 Rely on the descriptions of these items included with the SYS_CONTEXT definition in Oracle9i SQL
Reference Release 2 (9.2). The similar-looking information under “Providing Access to Predefined Attributes

Through the USERENV Namespace” in Oracle 9i Application Developer's Guide – Fundamentals
Release 2 (9.2), Ch. 12 ImplementingApplication Security Policies contains errors.

IOUG Live! 2003: DBA Secure Schemata: What No One is Telling You

Paper 549 p. 8 of 10

The value of each of these attributes may be fetched with the SYS_CONTEXT('UserEnv', '<attribute>') call

(allowing for bug citations scattered throughout this paper).

Given the strategy in this paper, it would be nice to be able to set a default Current_Schema for a user – other

than their own username, that is – but, alas, I've not yet found a way to do that. It can't be done in a logon trigger

for a couple of reasons:

�ALTER SESSION ... is a DCL statement, and only DML statements are permitted in such triggers.

�A logon trigger executes as an independent transaction, so presumably such a change would not filter back to the

session anyway.

DML PRIVILEGES AND ROLES

We still have one more requirement to satisfy to complete the picture: we have to ensure only logically consistent

and complete updates are applied to the data base. Since Oracle treats each DDL statement as a transaction, we

only need to focus on DMLs where several statements are typically required to complete a transaction. (We ignore
the use of the CREATE SCHEMA ... statement since its conformance to the minimal ANSI specification means it

precludes use of many Oracle features. And it's hard to use Oracle properly without using those features! We also

note that, unlike Oracle, some relational implementations include DDLs as part of the transaction, requiring a

COMMIT for them to take effect, so the strategy we are about to describe would need to be adjusted accordingly.)

We require proper updates to come from code that we know we can trust. But when we look at Oracle's network

protocol – SQL*Net v2, Net8, or Net, depending on your release – we see that only one thing is validated: the

username.

Since there is no mechanism for certifying the program running at the client end of the link, we have to assume it

cannot be trusted. The name may be available to us (in V$Session.Program), but how do we know it’s not just

SQL*Plus renamed? We don't.

If we can't establish the trustworthiness of the client-end program, neither can we trust it to send updates to the

data base. In other words, we cannot entrust INSERT, UPDATE, or DELETE privileges to any code executing

outside the data base.

That leaves the option that update routines must only exist at the server end, where they can be trusted by dint of

getting onto the machine. But in the same way, we can't guarantee a sequence of procedure calls from the client to

the server. So our routines must satisfy the following rules to meet our requirements:

�Each consistent update will require a single call to a server-side procedure. The procedure will need to have as

many parameters as required to meet the needs of the transaction.

�That procedure must perform all INSERT, UPDATE, and DELETE actions required for a single, logically-

consistent, update of the data base.

�Finally, the procedure must do a COMMIT – or ROLLBACK – before returning control to the caller.

To put it another way, the only DML privileges GRANTed to a data base user are SELECT and EXECUTE. (Note,

on the other hand, that Oracle’s implementation of DDLs – a single call does everything including a COMMIT

before returning to the caller - satisfies the requirements to be directly GRANTable!)

There are good reasons for wanting to do this anyway. By having the update routine implemented once at the

server end, it is easier to support the same transaction from assorted sources: via a web form, using a custom

client, and even as part of a batch run. But it must also sufficiently validate its parameters so that even someone

typing in a procedure call at a SQL*Plus prompt cannot “do damage”. Because, as we noted earlier, there's no
way to tell whether that's what is happening.

Of course, these privileges should be assigned via roles. I would recommend structuring roles so that setting a

single role suffices to be able to perform an update, including any SELECTs necessary to gather data for the

update call.

Secure Schemata: What No One is Telling You IOUG Live! 2003: DBA

p. 9 of 10 Paper 549

(And forget password-protected roles as a way to address the issues I raise. Any sense of security they bring is

false and easily compromised4, especially if you are not using the Advanced Security option we'll discuss
shortly.)

TRADITIONAL SECURITY TOPICS

That's about it for the basic architecture of a secured design. And we've yet to do more than mention in passing

some of the “traditional” topics I cited at the start. As it happens, I have opinions on some of these that I think it

important to share before I finish.

ADVANCED SECURITY

This feature – which is, astonishingly, an extra-cost option – is my litmus test when judging a book's coverage of
Oracle security. Since the books I've checked to date give this feature something between no mention and maybe a

page or two, I'm afraid they all “fail”.

You cannot secure an Oracle-based application without this option.

Why is Advanced Security important? It adds two features to Oracle:

�The ability to authenticate data base users via network services such as RADIUS, Kerberos, or PKI.

�Encryption of [SQL*]Net[8] traffic.

Since, out of the box, Oracle already includes some level of authentication (especially once password

management appeared in Oracle8), it is the second feature that is most important. Without the option, all traffic

transits the network “in the clear”. Would you run an “ecommerce” web site without using TLS/SSL? And

[SQL*]Net[8] is the conduit directly to the data itself.

(Actually, there is a trivial exception to this rule: the logon password is initially sent encrypted. But if that fails, it

will be retried in the clear unless an option is set at the client end to not do this. Since I, as an administrator, have

no control of the client, this seems pretty pointless. What I need is a server-side option to tell the client that a

clear-text password will be refused, so it shouldn’t even try it.)

Lest you find comfort in the idea that [SQL*]Net[8] might be secure because of its proprietary nature, check out a
GPLed network “sniffer” called “ethereal”5. Amongst the protocols it claims to support is TNS (Transparent
Network Substrate), which is the technical name for the [SQL*]Net[8] protocol.

So my advice is, at a minimum, to buy the option and enable the encryption feature, and then sleep a little better at

nights. (I will not tell you that implementing it is going to be easy.)

Note that this option can only be used with JDBC Type 2 “thick” clients. If you prefer JDBC Type 4 “thin” clients

– and you should! - you are out of luck. At least until the new JDBC v1.4 specification is implemented, if I read

that correctly.

ORACLE AUDIT

This is a “logical” log of actions that occur within the data base. Conventional wisdom says the overhead is

probably too much to use it. Conventional wisdom is wrong.

At the risk of showing my age, I remember trying to find people who were using redo logs back when they were

optional on Oracle v5, but most people avoided them because of the assumed overhead. Firstly, the overhead

turns out to be manageable if not reasonable, and secondly the benefits are important. With very little prudence on

your part, I'm sure you'll find the same to be true with AUDIT.

Simply put, your AUDIT strategy starts as:

�NO AUDIT for Sys.Dual, Sys.DBMS_STANDARD, Sys.STANDARD, and Sys.~$ objects except Sys.Aud$.

4.
4
See my article, “Password-Protected Roles: No Security Blanket Here!”, in the August 1999 (Vol. 6, No. 5 –
“electronic only”) edition of the Select Journal archives on the IOUG web site. In the introduction to the paper
I opine “... an application architecture that relies on [Password-Protected Roles] is an abdication by the DBA
of all security responsibilities. ...” Hopefully, I then go on to substantiate that claim.

5.
5
www.Ethereal.Com

IOUG Live! 2003: DBA Secure Schemata: What No One is Telling You

Paper 549 p. 10 of 10

�All failures BY ACCESS.

(Heh, the first time I tried this I discovered programs mis-handling “not found” conditions.)

�All DML successes BY SESSION.

�All other successes BY ACCESS.

Since DDLs should not occur too often, and given their potential impact, logging each and every one of them
is prudent!

Based on what you get, you can refine it from there.

LogMiner now offers an overlapping feature by letting you extract information from the redo logs. The difference

is that Audit Trail entries reflect user actions and are available immediately the event happens, whereas redo logs

reflect physical file changes and can't be seen by LogMiner until a redo log is released. But I would encourage

you to check them both out when deciding your strategy, and you probably want to take advantage of both

options.

Another thing to note is that Oracle offers no administrative help with the Audit Trail. You will need to

implement your own archive-and-purge mechanism. And you will want to keep an eye on it: by default it goes in

the SYSTEM tablespace, and if this tablespace fills up, the data base simply stops. (Too bad Oracle didn't learn a

lesson from the *nix world here, where the system automatically does a log file switch when a configurable file

size is hit. Partitioned table, anyone??)

Finally, there are scripts around – there was even one in MetaLink, last time I looked! – describing how to move

the Audit Trail into a different tablespace, which is a very good idea since this table is waayyy more dynamic than

any of the other catalogue tables. But you should also weigh the following comment in Oracle's documentation6:

“Note:

Moving the SYS.AUD$ table out of the SYSTEM tablespace is not supported because Oracle code makes

implicit assumptions about the data dictionary tables, such as SYS.AUD$, which could cause problems

with upgrades and backup/recovery scenarios.”

I've not heard of an explicit reason for this warning, but it seems to me anyone suggesting the relocation of the

table should also be telling you about this warning from Oracle against it.

CONCLUSION

In summary, we have proposed some fundamental changes to the way schemata are set up and used within an

Oracle instance:

�The owner of the objects should be locked down so that no one can connect with it.

�There should be no shared authentications, not even among the DBAs.

�Objects are administered via two mechanisms:

1.Give “any” privileges to schema administrators, controlling the scope of their use via a data base trigger.

2.Implement DDL functions in schema-owned procedures with execution privileges given to schema

administrators.

�Data base links with embedded username/password authentications are always created as private links.

�Use of such links is by creation of objects upon them, and giving of access to those objects.

�SELECT and EXECUTE are the only DML privileges GRANTed.

�All updating is via server-side, “safe” procedures requiring a single call to effect a logically-consistent

update.

We don't claim this is all you need to do. But we do claim you will have a much stronger foundation from which

to build a safe and secure application environment.

The author may be contacted at BJohnson@WorldBank.Org.

6.
6
Oracle9i Database Administrator's Guide Release 2 (9.2), Ch. 26 Auditing Database Use, “Controlling the
Growth and Size of the Audit Trail”.

DataDemythed.com

